L3 Daily Global (08_D3) Statistics
 Collection 006 Updates

Purple Shade PGE56:v6.1.9+ D3 only (Terra ... and Aqua forward Nov 2014+)

Solar and Sensor Angles

Derived from L2 Aerosol (04_L2)
Combined Land \& Ocean

01. Aerosol_Optical_Depth_Land (3) [previously Corrected]	-			-	-	-	-		-	-												
02. Aerosol_Number_Pixels_Used_Land (2) to (10)	-			-	-	-	-		-													

Ocean Only

01. Aerosol_Optical_Depth_Average_Ocean (7) [prev Eff.]	\bullet	-	-	-	-	-	-	-											
02. Aerosol_Optical_Depth_Small_Ocean	\bullet	\bullet	-	-	\bullet	\bullet	\bullet	\bullet											
03. Aerosol_PSMLO03_Ocean [prev. Ccn_Ocean]	\bullet	\bullet	-	-	\bullet	-	-	\bullet											
04. Aerosol_Optical_Depth_by_models_Ocean (9)	\bullet	\bullet	\bullet	-	\bullet	\bullet		-											
05. Aerosol_Number_Pixels_Used_Ocean (1) to (10)	\bullet	\bullet	\bullet	-	\bullet	\bullet	\bullet												
06. Aerosol_AE1_Ocean (8×9)														-					
07. Aerosol_AE2_Ocean (8×9)														\bullet					
08. Aerosol_OD_Ratio_Small_Ocean (5x9)														\bullet					
Deep Blue Aerosol (No QA SDS's but still QAMasked)																			
01. Deep_Blue_Aerosol_Optical_Depth_Land	-	-	-	-			\bullet												
02. Deep_Blue_Aerosol_Optical_Depth_550_ Land	\bullet	\bullet	-	-			\bullet												
03. Deep_Blue_Angstrom_Exponent_Land	\bullet	\bullet	-	\bullet			\bullet												
04. Deep_Blue_Single_Scattering_Albedo_ Land (3)	\bullet	\bullet	-	-			\bullet												
05. Deep_Blue_Number_Pixels_ Used_550_Land	\bullet	-	-	-			-												
06. AOD_550_Dark_Target_Deep_Blue_Combined	-	-	-	-			\bullet												

Derived from L2 Water Vapor (05_L2)

Derived from L2 Cloud (06_L2)

Cloud Optical Properties [PCL: Partly Cloudy Day:SolarZA $\leq 81.3731^{\circ}$]
(Primary 2.1 Retrieval) D = SDS in D3 only (not in E3/M3)

01. Cloud_Optical_Thickness_Liquid	\bullet	\bullet	-	\bullet	-			-	-		-	-	\bullet			\bullet		\bullet
02. Cloud_Optical_Thickness_I ce	\bullet	\bullet	\bullet	\bullet	-			-	-		-	-	-			\bullet	D	\bullet
03. Cloud_Optical_Thickness_Undetermined	\bullet	-	\bullet	\bullet							-	\bullet						
04. Cloud_Optical_Thickness_Combined	\bullet	\bullet	\bullet	\bullet							\bigcirc	-						
05. Cloud_Optical_Thickness_PCL_Liquid	-	-	-	\bullet	-			-					-					

Egurtih ©bsorvimg Systam MODIS Atmosphere Level-3 Dany yeroduce	$\begin{aligned} & \mathbf{\Sigma} \\ & \mathbf{0} \\ & \mathbf{O} \\ & \boldsymbol{\Sigma} \end{aligned}$	O		$\begin{aligned} & \underline{\underline{E}} \\ & \underline{\underline{E}} \\ & \underline{\underline{x}} \end{aligned}$			uо!ңе!ләव рлериеұS \forall -				4 $\stackrel{y}{3}$ 0 0 0 1 \mathbf{x} 2						(uxu) sn!pey $\Perp \exists$ s^ 07s!H			Histo_vs_Temperature ($n \times n$)	
06. Cloud_Optical_Thickness_PCL_I ce	\bullet	-		-	\bullet			-				-					-				
07. Cloud_Optical_Thickness_PCL_Undetermined	\bullet	-		\bullet	\bullet																
08. Cloud_Optical_Thickness_PCL_Combined	\bullet	-		-	\bullet																
09. Cloud_Optical_Thickness_ISCCP ${ }^{8}$																					\bullet
10. Cloud_Optical_Thickness_PCL_ISCCP ${ }^{8}$																					\bullet
11. Cloud_Effective_Radius_Liquid	\bullet	-		\bullet	\bullet			\bullet				-								\bullet	D
12. Cloud_Effective_Radius_I ce	\bullet	-		\bullet	\bullet			\bullet				\bigcirc								\bullet	D
13. Cloud_Effective_Radius_Undetermined	\bullet	-		-	\bullet																
15. Cloud_Effective_Radius_PCL_Liquid	\bullet	\bullet		-	\bullet							-									
16. Cloud_Effective_Radius_PCL_I ce	\bullet	-		-	\bullet							-									
17. Cloud_Effective_Radius_PCL_Undetermined	\bullet	-		-	\bullet																
18. Cloud_Water_Path_Liquid	\bullet	-		-	\bullet			\bullet				-									
19. Cloud_Water_Path_I ce	\bullet	-		-	\bullet			\bullet				-									
20. Cloud_Water_Path_Undetermined	\bullet	\bullet		\bullet	\bullet																
22. Cloud_Water_Path_PCL_Liquid	\bullet	\bullet		-	\bullet			\bullet				-									
23. Cloud_Water_Path_PCL_Ice	\bullet	-		-	-			-				-									
24. Cloud_Water_Path_PCL_Undetermined	\bullet	-		-	-																
25. Cloud_Phase_Optical_Properties [L, I, U] [Cld+PCL] [S+F?]																				\bullet	
26. COP_Phase_Cloudy [3 cats: Liq, Ice, Undet] CSR=0 [Succ+Fail]								D													
27. COP_Phase_Partly_Cloudy [Liq, Ice, Undet] CSR=1,3 [S+F]								D													
28. COP_Phase_CloudMaskClear [Cloud Mask Clear] CSR=0								D													
29. COP_Phase_RestoredToClear [Restored To Clear] CSR=2								D													

(Primary Successful Cloud Retrieval Fraction)

30. Cloud_Retrieval_Fraction_Liquid [denom. incl. fail in C6]								-	-										
31. Cloud_Retrieval_Fraction_I ce [denom. incl. fail in C6]								-	-										
32. Cloud_Retrieval_Fraction_Undetermined ["]								-	-										
33. Cloud_Retrieval_Fraction_Combined ["]								-	-										
34. Cloud_Retrieval_Fraction_PCL_Liquid ["]								\bullet	-										
35. Cloud_Retrieval_Fraction_PCL_I ce ["]								-	-										
36. Cloud_Retrieval_Fraction_PCL_Undetermined ["]								-	-										
37. Cloud_Retrieval_Fraction_PCL_Combined ["]								-	\bullet										

(Primary Retrieval Single Layer Clouds on

01. Cloud_Optical_Thickness_1L_Liquid ${ }^{4}$	\bullet	-		\bullet	\bullet		-				-				D					
02. Cloud_Optical_Thickness_1L_Ice ${ }^{5}$	\bullet	-		\bullet	\bullet		\bullet				-				D				D	
03. Cloud_Effective_Radius_1L_Liquid	\bullet	-		\bullet	\bullet		\bullet				-									
04. Cloud_Effective_Radius_1L_Ice	\bullet	-		\bullet	\bullet		-				-									
05. Cloud_Water_Path_1L_Liquid	\bullet	-		\bullet	\bullet		\bullet				-									
06. Cloud_Water_Path_1L_Ice	\bullet			\bullet	\bullet		\bullet				\bigcirc									
07. Cloud_Phase_Optical_Properties1L																		D		

[^0]08. Cloud_Retrieval_Fraction_1L_Liquid
09. Cloud_Retrieval_Fraction_1L_Ice
(Multi-Layer Cloud Fraction)

(Ratio of Multi-Layer Clouds to All-Layer Clouds by Phase)

08. ML_Ratio_Combind [prev. Fraction]
(Supplementary 1.6/2.1 Retrieval) vs. Re1621

01. Cloud_Optical_Thickness_1621_Liquid ${ }^{6}$	\bullet	-	-	-			-					\bullet					-				
02. Cloud_Optical_Thickness_1621_Ice ${ }^{7}$	-	-	-	-			\bullet					-					-				
03. Cloud_Effective_Radius_1621_Liquid	-	-	-	-			\bullet					-									
04. Cloud_Effective_Radius_1621_Ice	\bullet	-	-	\bullet			\bullet					\bullet									
05. Cloud_Water_Path_1621_Liquid	-	-	-	\bullet			\bullet					\bullet									
06. Cloud_Water_Path_1621_Ice	-	\bullet	-	-			\bullet					-									
07. Cloud_Retrieval_Fraction_1621_Liquid [denom incl. fail]									-	-											
08. Cloud_Retrieval_Fraction_1621_I ce [denom incl. fail]									-	-											
09. Cloud_Optical_Thickness_1621_PCL_Liquid ${ }^{6}$	\bullet	\bullet	-	-			\bullet					-					-				
10. Cloud_Optical_Thickness_1621_PCL_I ce ${ }^{7}$	\bullet	-	-	-			\bullet					-					-				
11. Cloud_Effective_Radius_1621_PCL_Liquid	-	-	-	-			\bullet					-									
12. Cloud_Effective_Radius_1621_PCL_I ce	\bullet	-	-	\bullet			\bullet					-									

Ecorth (Tbsorvimg Systam MODIS Atmosphere Level-3 Daty yrôduea						$\text { ио!ңе!ләа рлериетs } \forall ठ$				¢	入	$\left(\begin{array}{l} 1 \\ \frac{2}{0} \\ 2 \\ 0 \\ 0 \\ \frac{5}{0} \\ \frac{0}{2} \\ 0 \\ 0 \\ 0 \end{array}\right.$						\square			
13. Cloud_Water_Path_1621_PCL_Liquid	-	\bullet	-	-			-														
14. Cloud_Water_Path_1621_PCL_I ce	\bullet	\bullet	-	\bullet			-														
15. Cloud_Retrieval_Fraction_1621_PCL_Liquid									-	-											
16. Cloud_Retrieval_Fraction_1621_PCL_Ice										\bullet											

(Supplementary 1.6 Retrieval)

01. Cloud_Optical_Thickness_16_Liquid	\bullet	-		-	-								-						D				
02. Cloud_Optical_Thickness_16_Ice	-	-		-	-								-						D				
03. Cloud_Effective_Radius_16_Liquid	-	-		-	-			-					-					-		D		D	
04. Cloud_Effective_Radius_16_Ice	-	-		-	-			-					-					-		D		D	
05. Cloud_ Water_Path_16_Liquid	-	-		-	\bullet			-					-										
06. Cloud_Water_Path_16_I ce	-	-		-	-			-					-										
07. Cloud_Retrieval_Fraction_16_Liquid										\bullet		-											
08. Cloud_Retrieval_Fraction_16_Ice										-		-											
09. Cloud_Optical_Thickness_16_PCL_Liquid	-	-		-	\bullet								-						D				
10. Cloud_Optical_Thickness_16_PCL_Ice	-	-		-	-								-						D				
11. Cloud_Effective_Radius_16_PCL_Liquid	-	-		-	-			-					-					-		D		D	
12. Cloud_Effective_Radius_16_PCL_Ice	-	-		-	-			-					-					-		D		D	
13. Cloud_Water_Path_16_PCL_Liquid	-	-		-	\bullet			-					-										
14. Cloud_Water_Path_16_PCL_Ice	-	-		-	\bullet			-					-										
15. Cloud_Retrieval_Fraction_16_PCL_Liquid										-		\bullet											
16. Cloud_Retrieval_Fraction_16_PCL_I ce										-		-											

16. Cloud_Retrieval_Fraction_16_PCL_I ce

Derived from L2 Atm Profile (07_L2)

D = SDS in D3 only (not in E3/M3). A total of 19 Joint Histograms were deleted going from D3 to E3/M3 due to 2 GB uncompressed HDF file size limit in HDF4. In the PGE56: v6.1.7 delivery a total of 8 new JH's were added to D3 only. So from that point forward, there are 27 D3 J H's which do not propagate to E3/M3. There are also 3 new Histogram SDS's in D3 related to COP Phase that also will not propagate to E3/M3 starting in PGE56:v6.1.9.
This corresponds to TL and D3 File Spec \#3039.

 some parameters can be up to 39 characters if you are careful about what statistics you attempt to compute and what statistic suffix's you attempt to append.
${ }^{4}$ Joint Histogram with Cloud_Effective_Radius_1L_Liquid
${ }^{5}$ Joint Histogram with Cloud_Effective_Radius_1L_Ice
${ }^{6}$ Joint Histogram with Cloud_Effective_Radius_1621_Liquid
${ }^{7}$ Joint Histogram with Cloud_Effective_Radius_1621_Ice
${ }^{8}$ Joint Histogram uses ISCCP-like bin boundaries

Definition of "Daytime" (where COP retrieves and where CTP define "_Day"parameters)

Cloud Optical Properties:

COP "Daytime", where retrievals for clouds are made, is $\arccos (.15)=81.3731^{\circ}$
So Cloud Optical Properties retrieves when Solar Zenith Angle $\leq 81.3731^{\circ}$
(Gala sometimes calls this SZA $<81.4^{\circ}$)

Cloud Top Properties:

CTP "Daytime", where the CTP group retrieves and they append "_Day" to their parameters (SDS's) in L2, is SZA $\leq 85.0^{\circ}$.
So Cloud Top Properties calls things "_ Day" in L2 when Solar Zenith Angle $\leq 85.0^{\circ}$
(Note: If you dump out the Solar_Zenith_Day SDS in L2, which is using the CTP definition of "daytime", you will see packed short integer values of 8500, but never 8501)

Upshot:
COP is 3.6269° more restrictive in the Solar Zenith Angle for their retrievals than the "_Day" CTP retrievals. (In other words, CTP extends a bit further into the low sun angle (twilight) regions than COP.)
81.3731° vs. 85.0°

Some April 4, 2014 notes on Cloud Optical Property parameters:

1. There are a number of new PCL (Partly Cloudy) Cloud Optical Property parameters.
2. The 1 L and ML aggregation is only defined (currently) for the Primary 2.1 retrieval.
3. Only Liquid and Ice are aggregated for 1621, 16, and 37. Added some additional parameters for the Non-PCL case for symmetry.
4. Added Optical Thickness, Water_Path and Fractions for the non-PCL "_16" and "_37" cases for symmetry.

Some October 1, 2014 notes on Cloud Optical Property parameters:
COP J oint (2D) Histogram Count $=44 \mathrm{~J}$ oint Histograms
COP Marginal (1D) Histogram Count $=44$ Marginal Histograms
3. Note the JH's highlighted in Blue are "jointed against" Re 1621 (So those JH's are: Tau1621 vs. Re1621)

There was not enough room in the SDS name to use "J Histo_vs_Eff_Radius_1621" in the Suffix Name with the long prefix name
4. In table above: $\mathbf{D}=$ SDS's in D3 only (not in E3/M3)

A total of 19 JointHistograms were deleted going from D3 to E3/M3 due to 2 GB uncompressed HDF file size limit in HDF4. There are also 14 scaler
SDS's related to COP Fractions that are only in the D3 and not propagated to E3/M3 (due to it not being necessary).

In the L2 Cloud Fraction from Cloud Mask for daytime, stored in the 06_L2 SDS Cloud_Fraction_Day, there ARE non-zero fractions stored, which are less 16% (less than 4 out of 25 pixels). If you dump out the 06_L2 SDS Cloud_Fraction_Day, you will see the full range of possible cloud fraction numbers (in 4% increments) of: 0\% , 4\% , 8\% , 12\% , 16\%, 20\%, $24 \%, \ldots, 92 \%$, $96 \%, 100 \%$. However only when the Cloud_Fraction is 16% or higher in a given $5 \times 5 \mathrm{~km}$ L2 CTP grid cell (that is, at least 4 cloudy $1 \times 1 \mathrm{~km}$ pixels in the $5 \times 5 \mathrm{~km}$ (25 pixel) CTP retrieval grid) , will there be a CTP cloud retrieval performed. So if you find Cloud_Fraction_Day values of $0 \%, 4 \%, 8 \%$, or 12%, in a particular $5 \times 5 \mathrm{~km}$ L2 grid cell, you will find the SDS's Cloud_Top_Temperature, Cloud_Top_Pressure, etc, with a FILL VALUE (-9999). So it is possible to have a valid (non-zero) Cloud_Fraction_Day ($4 \%, 8 \%, 12 \%$) and a FILL (-9999) Cloud_Top_Pressure_Day, Cloud_Top_Temperature_Day, etc in the same $5 \times 5 \mathrm{~km}$ grid cell.

At last count in October 2014, there were 88 J oint Histograms in the D3 file. (Fewer than that in the E3/M3)

[^0]: Single-Layer Cloud Fraction)

