A satellite view of aerosols in the climate system

Yoram J. Kaufman*, Didier Tanré & Olivier Boucher†

*NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771, USA (e-mail: kaufman@climate.gsfc.nasa.gov)
†Laboratoire d’Optique Atmosphérique, Université de Lille/CNRS, Villeneuve d’Ascq, France

Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth’s climate and water supply.

During the last century, the Earth’s surface temperature increased by 0.6 °C, reaching the highest levels in the last millennium. This rapid temperature change is attributed to a shift of less than 1% (ref. 2) in the energy balance between absorption of incoming solar radiation and emission of thermal radiation from the Earth system. Among the different agents of climate change, anthropogenic greenhouse gases and aerosols have the larger roles. Whereas greenhouse gases reduce the emission of thermal radiation to space, thereby warming the surface, aerosols mainly reflect and absorb solar radiation (the aerosol direct effect) and modify cloud properties (the aerosol indirect effect), cooling the surface. These impacts on the radiation balance are very different and therefore require different research approaches.

Greenhouse gases, such as carbon dioxide and methane, have a lifetime of up to 100 years in the atmosphere and a rather homogeneous distribution around the globe; this is in contrast to the heterogeneous spatial and temporal distribution of tropospheric aerosols, which result from their short lifetime of about a week. As a consequence, the global increase in CO₂ concentration of 1–2 p.p.m. per year was measured half a century ago using a single ground-based instrument, while daily satellite observations and continuous in situ measurements are needed to observe the emission and transport of dense aerosol plumes downwind of populated and polluted regions (urban haze), regions with vegetation fires (smoke), and deserts (dust). The effect of greenhouse gases on the energy budget occurs everywhere around the globe. Aerosols have both regional and global impacts on the energy budget, requiring frequent global measurements to elucidate models that provide realistic representations of the atmospheric aerosols.

Aerosol effects on climate differ from those of greenhouse gases in two additional ways. Because most aerosols are highly reflective, they raise our planet’s albedo, thereby cooling the surface and effectively offsetting greenhouse gas warming by anywhere from 25 to 50% (refs 1, 9–11). However, aerosols containing black graphitic and tarry carbon particles (present in smoke and urban haze) are dark and therefore strongly absorb incoming sunlight. The effects of this type of aerosol are twofold, both warming the atmosphere and cooling the surface before a redistribution of the energy occurs in the column. During periods of heavy aerosol concentrations over the Indian Ocean and Amazon Basin, for example, measurements revealed that the black carbon aerosol warmed the lowest 2–4 km of the atmosphere while reducing by 15% the amount of sunlight reaching the surface. Heating the atmosphere and cooling the surface below reduces the atmosphere’s vertical temperature gradient and therefore is expected to cause a decline in evaporation and cloud formation.

The second way in which aerosols differ from greenhouse gases is through the aerosol effect on clouds and precipitation. In polluted regions, the numerous aerosol particles share the condensed water during cloud formation, therefore reducing cloud droplet size by 20–30%, causing an increase in cloud reflectance of sunlight by up to 25% (refs 2, 16–19), and cooling the Earth’s surface. The smaller, polluted cloud droplets are inefficient in producing precipitation and may ultimately modify precipitation patterns in populated regions that are adapted to present precipitation rates. The cooling effect due to polluted clouds is still poorly characterized with an uncertainty 5 to 10 times larger than the uncertainty in the predicted warming effect of greenhouse gases. The effect of aerosols on precipitation is even less well understood.

To assess the aerosol effect on climate we first need to distinguish natural from anthropogenic aerosols. Satellite data and aerosol transport models show that plumes of smoke and regional pollution have distinctive large concentrations of aerosols in particular of fine (submicron) size. In contrast, natural aerosol layers may have concentrated coarse dust particles and only widespread fine aerosols from oceanic and continental sources. The ability of satellites to observe the spatial distribution of aerosols and to distinguish fine from coarse particles, can be exploited to separate natural from anthropogenic aerosols. In situ measurements of aerosol composition and size, models that assimilate...
Aerosol research is in transition from an exploratory phase to a global quantitative phase. The exploratory phase is dominated by the discovery of new aerosol-related processes. For example, the large concentration of black carbon emitted from vegetation fires and found in regional pollution in the tropics and its effect on slowing down the hydrologic cycle, the effect of aerosol on reducing precipitation efficiency, and counteracting regionally the greenhouse warming. In this phase, models are used to assess the potential of aerosol processes to affect the global climate. Because aerosols vary widely from region to region, a multiple measurement approach is necessary to assess their impacts on global climate. Specifically, we require the use of long-term, detailed global measurements from satellites, distributed networks of ground-based instruments, and comprehensive regional experiments in clean and polluted environments, that feed global aerosol and climate models.

Regional variability of aerosols

Most aerosols are regional in nature owing to their short lifetime, the regional distribution of sources, and the variability in their properties. Seasonal meteorological conditions determine how far aerosols are transported from their sources as well as how distributed they are vertically through the atmosphere. Elevated aerosol layers can be picked up by strong winds and transported from Africa or Asia to America and from America to Europe. Aerosol properties are modified during the transport by dry or wet deposition, in-cloud processes, and atmospheric chemical reactions.

Aerosol optical thickness (AOT) describes attenuation of sunlight by a column of aerosol, and thus serves as a measure of aerosol column concentration. In Fig. 1a,b, AOT is shown separately for fine and coarse aerosol for September 2000, using satellite techniques discussed in Box 1; several typical regional aerosols are distinguished (see also Table 1).

Urban and industrial regional pollution (urban haze)

These mainly fine hygroscopic particles are found downwind of populated regions (regions a, c, and e in Fig. 1a) in air polluted, for example, by car engines, industry, cooking and fireplaces. In China, economic growth and population expansion increased AOT from 0.38 in 1960 to 0.47 in 1990 (ref. 45). Pollution aerosol was modelled first as sulphates only, but new chemical measurements show that downwind of the eastern United States the contribution of carbonaceous material to AOT (30%) is double that of sulphates (16%), with water intake (48%) and black carbon (6%) accounting for the rest. Black carbon describes the effective fraction of elemental carbon that accounts for the absorption properties of the aerosol. Emission of black carbon is lower for newer engine technology so that black carbon contributes generally more to AOT in south and east Asia and Central America (11%). Absorption by black carbon is not only related to its concentration, but also depends on its location in the aerosol particle - absorption can betwo to three times stronger if the black carbon is located inside the scattering particle.

Smoke from vegetation fires

Smoke from vegetation fires is dominated by fine organic particles with varying concentrations of light-absorbing black carbon (regions b and d in Fig. 1a) emitted in the hot, flaming stage of the fire. In forest fires, the flaming stage is followed by a long, cooler smouldering stage in which the thicker wood, not completely consumed, emits smoke (composed of organic particles without black carbon) in much greater quantities than during the flaming stage. Conversely, thin African grasses burn quickly in strong flaming fires, emitting large quantities of black carbon, without a smouldering stage. On average, 12% of African smoke AOT is due to absorption by black carbon.

Table 1 Climatology of ambient aerosol properties averaged on the atmospheric column

<table>
<thead>
<tr>
<th>Analysis/Aerosol type</th>
<th>Regional pollution aerosol</th>
<th>Biomass burning</th>
<th>Dust</th>
<th>Oceanic</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERONET analysis</td>
<td>East. US & Europe</td>
<td>SE Asia</td>
<td>Cen. Am.</td>
<td>Boreal forest</td>
</tr>
<tr>
<td>Time of the year</td>
<td>Jun-Sep</td>
<td>Jan-Apr</td>
<td>Jan-Dec</td>
<td>Jun-Nov</td>
</tr>
<tr>
<td>Average AOT</td>
<td>0.20</td>
<td>0.20</td>
<td>0.30</td>
<td>0.25–0.45</td>
</tr>
<tr>
<td>AOT</td>
<td>94%</td>
<td>95%</td>
<td>90%</td>
<td>95%</td>
</tr>
<tr>
<td>% absorption of AOT</td>
<td>3%</td>
<td>6%</td>
<td>12%</td>
<td>7%</td>
</tr>
<tr>
<td>MODIS analysis</td>
<td>North Atlantic</td>
<td>SE Asia</td>
<td>South Africa</td>
<td>15°W–30°E 0–20°S</td>
</tr>
<tr>
<td>Time of the year</td>
<td>Jul-Sep</td>
<td>Jul-Oct</td>
<td>Jul-Nov</td>
<td>Jul-Dec</td>
</tr>
<tr>
<td>Average AOT</td>
<td>0.18</td>
<td>0.24</td>
<td>0.31</td>
<td>0.30</td>
</tr>
<tr>
<td>AOT</td>
<td>41%</td>
<td>44%</td>
<td>66%</td>
<td>33%</td>
</tr>
<tr>
<td>ΔF TOA (W m⁻²)</td>
<td>-8</td>
<td>-10</td>
<td>-10</td>
<td>-17</td>
</tr>
<tr>
<td>ΔF SUR (W m⁻²)</td>
<td>-10</td>
<td>-23</td>
<td>-30</td>
<td>-23</td>
</tr>
</tbody>
</table>

The aerosol properties presented are based on two types of analysis. The top part of the table shows systematic multi-year measurements by the Aerosol Robotic Network (AERONET) and in situ measurements, whereas data in the bottom part of the table are based on analysis of Moderate-resolution Imaging Spectroradiometer (MODIS) satellite data for September 2000. In the AERONET analysis, aerosol optical thickness (AOT) is a measure of the aerosol column concentration and is given at a wavelength of 0.55 μm. Four aerosol types are shown with a representative size distribution (in units of μm² per μm⁰.5): (1) pollution from eastern United States (Greenbelt, Maryland) and Europe (Venice and Paris), southeast Asia (Maldives–INDOEX) and Central America (Mexico City); (2) biomass burning from Africa and South America; (3) dust over the Atlantic Ocean (Cape Verde); and (4) maritime aerosol over the Pacific Ocean (Kan). The uncertainty in AOT is ±0.01; contribution of the fine mode to AOT (AOTf) is given over the land with uncertainty of ±2%. In the MODIS data the uncertainty in AOT ranges from ±0.03 to ±0.06. The reflection of sunlight to space (ΔF TOA) and reduction of surface illumination (ΔF SUR) are based on the AERONET and MODIS data, using the radiative transfer code of Chou. © 2002 Nature Publishing Group
carbon32, in contrast to 5\% for Boreal fires33. Smoke is less hygroscopic than regional pollution aerosol, with only 10–20\% of smoke \textit{aot} being associated with water for typical relative humidities of 80–85\% in South America and Africa34, compared with 50\% for regional pollution aerosol1. Dense smoke plumes are found annually downwind of fires in South America (August–October), Central America (April and May), Southern Africa (July–September) and Central Africa (January–March)1,35,54.

Dust

Dust is emitted from dry lakebeds in the Sahara, east Asia and the Saudi Arabian deserts5 (regions a and c in Fig. 1b) that were flooded by the wind of fires in South America (August–October), Central America being associated with water for typical relative humidities of 80–85\%.

Box 1

How do satellites observe aerosols?

Radiant energy reflected and emitted by the Earth carries with it a signature of the atmospheric and surface properties. By measuring the wavelength, angular and polarization properties of this energy, satellite sensors can quantify several atmospheric and surface properties. (Polarization is the degree of organization of the electric field of the scattered solar radiation into a given direction.)

The human eye is sensitive to a narrow spectral range of the solar spectrum, with spectral receptors for blue, green and red light. Depth perception is provided by our eyes having slightly different angles of observation. By analogy, aerosol remote sensing — for example, AVHRR (Advanced Very High Resolution Radiometer), METEOSAT and GOES (Geostationary Operational Environmental Satellite) — developed from using a single wavelength35,36 and single angle of observation, like a colour-blind person with one eye. The TOMS instruments (for Total Ozone Mapping Spectrometer), flown since 1978, have two channels sensitive to ultraviolet light that were discovered to be excellent for observations37,38 of elevated smoke or dust layers above scattering atmosphere (Box Fig. 1).

The first instrument designed for aerosol measurements, POLDER (Polarization and Directionality of the Earth’s Reflectances)26,38,40,41, uses a combination of spectral channels in a range wider than that of human vision (0.44–0.86 \(\mu\)m). The instrument comprises a wide-angle camera that observes the same target on the Earth at several different angles, up to zenith angle of 65\degree. POLDER also measures light polarization to detect fine aerosols over the land, taking advantage of the difference between the spectrally neutral polarized light reflected from the Earth’s surface and the spectrally decreasing polarized light reflected by fine aerosols (see Fig. 4).

Two instruments, MODIS (Moderate-resolution Imaging Spectroradiometer) and MISR (Multi-angle Imaging Spectroradiometer), on the Terra satellite measure global aerosol concentrations and properties since 2000. Over the ocean, MODIS uses the aerosol spectral signature in a wide range (0.47–2.1 \(\mu\)m) to distinguish small pollution particles from coarse sea-salt and dust5 (Box Fig. 2). MODIS measures aerosol optical thickness (AOT) with an estimated error of \(\pm 0.05 \pm 0.20\) AOT over the land44 and \(\pm 0.03 \pm 0.05\) AOT over the ocean45 (note that 0.03 is an offset due to uncertainty in the ocean state and 0.05 AOT is due to uncertainty in aerosol properties). Over land, MODIS uses the 2.1 \(\mu\)m channel to observe surface-cover properties, estimate surface reflectance at visible wavelengths, and derive AOT46 from the residual reflectance at the top of the atmosphere.

The amount of light escaping the top of the atmosphere is affected by the angle at which the light was reflected by the surface or atmosphere. MISR47 takes advantage of this fact by detecting the reflected light at different viewing angles (nadir to 70\degree forward and backward) along the satellite’s track in a narrower spectral range (0.44–0.86 \(\mu\)m). It is thus able to separate the aerosol signal from that of surface reflectance, and determine the aerosol properties. A mixed approach using two viewing directions but a wider spectral range (0.55–1.65 \(\mu\)m) is used by ATSR (Along Track Scanning Radiometer)48 to derive the aerosol concentration and type.

Over bright desert the magnitude of dust absorption determines if dust brightens or darkens the image49,50, and this property is used for its estimation. Such satellite measurements, in agreement with \textit{in situ}8, aircraft46 and radiation-network33 measurements of dust absorption, helped resolve a long-standing uncertainty in desert-dust absorption of sunlight46.

The realization that aerosols affect surface temperature and precipitation patterns creates a demand for more informative spaceborne observations. We foresee several improvements in this respect. First, spaceborne instruments are being considered that combine a wide spectral and viewing-angle range50 with polarization. Such instruments are expected to improve derivation of fine and coarse aerosols, including their sizes and refractive index (refractive index, an optical property, is sensitive to the aerosol composition and water intake101). Second, derivation of aerosol absorption over the oceans will be achieved by measuring the aerosol spectral attenuation of the bright glint.

Box Figure 2

Spectral aerosol reflectance measured by MODIS. Panels in the left column show colour composites of channels in the visible spectrum and those on the right show composites in the near infrared spectrum.

a. Fine smoke particles from fires in Australia (25 December 2001), which are invisible over the ocean in the near infrared44. b. Coarse dust particles emitted from West Africa (7 January 2002), which are visible in both panels over the ocean. c. Smoke in Idaho and Montana invisible in the mid-infrared over the land. The spectral measurements are used to detect smoke over land11,15,36 and distinguish smoke from dust over the ocean.
composed of coarse salt particles emitted from bursting sea foam in windy conditions and fine sulphate particles from oceanic emissions. Oceanic aerosol generally absorbs very little sunlight and its AOT is estimated to average 0.07 in most regions, but increases in the windy region south of 40°S to 0.2.

Anthropogenic component

It is difficult to distinguish anthropogenic from natural aerosols as even individual particles can have both natural and anthropogenic components. Precise description of aerosol composition requires in situ chemical measurements that are restricted in time and location. However, it is possible to estimate the anthropogenic part of aerosols using a combination of satellite data, aerosol models and information on urban and agricultural activities and fire practices. For example, in Fig. 1 we see that anthropogenic aerosols downwind from vegetation fires and regions of industrial pollution are characterized by high concentration of fine particles. Aerosol models confirm this finding, and further show that natural fine aerosols emitted from large-area oceanic and land sources exhibit much smaller spatial variability (Fig. 2). An example of daily satellite data and model calculations shows clear distinction between dust plume (coarse particles) and the regional pollution (fine particles). The model simulations confirm this distinction.

Oceanic aerosol

Oceanic aerosol is shown in the blue regions of Fig. 1b and the elevated green values at latitudes south of 40°S (region b in Fig. 1b). It is composed of coarse salt particles emitted from bursting sea foam in windy conditions and fine sulphate particles from oceanic emissions. Oceanic aerosol generally absorbs very little sunlight and its AOT is estimated to average 0.07 in most regions, but increases in the windy region south of 40°S to 0.2.

Anthropogenic component

It is difficult to distinguish anthropogenic from natural aerosols as even individual particles can have both natural and anthropogenic components. Precise description of aerosol composition requires in situ chemical measurements that are restricted in time and location. However, it is possible to estimate the anthropogenic part of aerosols using a combination of satellite data, aerosol models and information on urban and agricultural activities and fire practices. For example, in Fig. 1 we see that anthropogenic aerosols downwind from vegetation fires and regions of industrial pollution are characterized by high concentration of fine particles. Aerosol models confirm this finding, and further show that natural fine aerosols emitted from large-area oceanic and land sources exhibit much smaller spatial variability (Fig. 2). An example of daily satellite data and model calculations shows clear distinction between dust plume (coarse particles) and the regional pollution (fine particles). The model simulations confirm this distinction.
An example of the relationship between population density and pollution concentration is shown in Fig. 4. Proximity of dust to desert or agricultural areas can be used as an indicator for natural desert dust. Continued improvements in the models, constrained by new, detailed global measurements, will enable us to isolate the anthropogenic aerosol component.

In the Indian Ocean Experiment, chemical separation of aerosols into natural and anthropogenic components shows that the natural aerosol AOT is 0.07, with an additional 0.2–0.6 over the Bay of Bengal resulting from anthropogenic activity. But pinpointing the anthropogenic source is proving difficult. Aerosol chemical composition can be used as a 'fingerprint' of the source, and a ratio of 1:2 between black carbon and total carbonaceous aerosol or sulphates suggests that the aerosol is emitted primarily from fossil fuel consumption. But aerosol concentration varies through the year, whereas the relatively steady use of fossil fuel in the tropics, with its small variation of energy use from winter to summer, would suggest a stable aerosol concentration. A correlation between aerosol concentration and number of fires in India suggests a large contribution of biomass burning. Analysis of aerosols and trace gases (CO and SO2) suggests a mixed origin, both from fossil fuel and bio-fuel burning in the same proximity.

Aerosol direct forcing

The climate system varies naturally, through the dynamic interplay between atmospheric, oceanic and terrestrial moisture and energy. However, the radiative effects resulting from an increase in the concentration of anthropogenic aerosol or greenhouse gases, called radiative forcing, cause a net change in the Earth's absorbed and emitted solar and thermal energy and therefore are the basic ingredients of climate change.

A negative radiative forcing indicates that the Earth-atmosphere system loses radiant energy, resulting in cooling. Models of the climate system show a direct relationship between radiative forcing and average global surface temperature, which rises 0.4–1.2 °C for every 1 W m⁻² of forcing. However, this relationship may break down for strongly absorbing aerosols.

Dust and smoke serve as an example of weakly and strongly absorbing aerosols (see Table 1). Absorption accounts for 5% and 12% of AOT for Saharan Desert dust and for aerosols in south and east Asia, respectively. In September 2000, dust reflected 17 W m⁻² of sunlight to space, thus reducing by an equivalent amount the energy available to heat the Earth-atmosphere system. At the same time, the dust reduced surface illumination by 23 W m⁻², the difference (6 W m⁻²) is due to the absorption of sunlight. The aerosols in south and east Asia also reduced surface illumination by 23 W m⁻², but absorbed 13 W m⁻², reflecting only 10 W m⁻² to space. Figure 5 shows the large regional extent of the aerosol radiative effects for these two aerosol types.

Another example of the radiative effects of weakly or strongly absorbing aerosol occurs over the Atlantic Ocean. Absorbing smoke is transported from Africa across the Southern Atlantic and less absorbing pollution aerosol is transported from North America in the Northern Atlantic (Fig. 1). In September 2000, aerosols found in these two
regions reflected 10 and 8 W m$^{-2}$, respectively, of sunlight to space. But the impact on surface illumination is three times larger for the smoke than for the pollution aerosol (30 W m$^{-2}$ versus 10 W m$^{-2}$). Model calculations show that such strong aerosol absorption occurring in the lower troposphere heats the air, reducing its relative humidity and temperature gradients, and increasing atmospheric stability. This decreases cloudiness and possibly reduces or prevents precipitation that could have washed the aerosols from the atmosphere.

The results in Fig. 5 and Table 1 were computed for cloud-free oceanic regions. In cloudy conditions, the aerosol radiative effect depends on the fraction of absorbing aerosol located above clouds, where the particles can absorb up to three times more sunlight than aerosol in cloud-free conditions. Absorbing aerosols may even have a positive (warming) rather than negative (cooling) radiative impact. Over dark oceans (albedo of 6%) the aerosol absorption has to be as high as 15% of AOT to result in warming, but 10% is enough over the brighter land (albedo of 20%), and only 5% if the aerosol layer is above boundary-layer clouds.

Knowledge of the vertical distribution of aerosols and clouds is therefore needed to calculate the impact of aerosol radiative effects. Elevated aerosol plumes occur during long-range transport of aerosols. For example, smoke from forest fires in Canada was found over Greece at 2–3 km altitude, above the local boundary-layer clouds; Saharan dust is transported over Europe at 3–10 km elevation, and smoke intrusions from fires in Mexico and northeast Canada are transported across North America at altitudes of 3–5 km. With the launch of space lidars in the next few years we will begin to make the global measurements of the aerosol and cloud profiles needed to assess aerosol radiative forcing.

Aerosol modification of clouds and precipitation
Each cloud drop requires an aerosol particle to condense upon; clouds could not form otherwise. Thus the concentration, size and composition of the aerosol that can act as cloud condensation nuclei (CCN) determine the cloud properties, evolution and development of precipitation. However, availability of moisture, updrafts and cloud formation are influenced mainly by large-scale dynamic processes. Although natural aerosols are needed to form clouds, it seems that urban haze and smoke aerosols take every opportunity to reduce formation of precipitation and affect cloud radiative properties at the same time (Fig. 6).

Cloud base
Aircraft measurements show that in polluted air a sixfold increase in the number of fine aerosols per unit volume of air produces a three- to fivefold increase in the droplet concentration. Analysis of global satellite data shows that such a change in aerosol concentration corresponds to 10–25% smaller cloud droplets (Fig. 7), because the condensed water is divided into more numerous droplets. Clouds with smaller, more numerous droplets have a larger surface area and a corresponding increase in reflectivity of up to 30% (ref. 17). This increase in the reflection of sunlight to space, called the first aerosol indirect effect, was proposed by Twomey, based on two decades of aircraft sampling, to possibly rival the greenhouse forcing. If these global cloud modifications can be attributed to anthropogenic effects, they would translate into a solar radiative forcing of 0.5 to 1.5 W m$^{-2}$ (ref. 17). The actual effect of aerosols on cloud droplets, as inferred from the cloud base, seems that urban haze and smoke aerosols take every opportunity to reduce formation of precipitation and affect cloud radiative properties at the same time.
compete at a given cloud updraft speed74. The presence of even a few supermicron CCN particles per litre, such as sea salt or dust particles coated with sulphates63, may reduce the indirect effect of pollution aerosol and produce precipitation75.

Additional aerosol processes have to be considered, such as the possibility that water-soluble organic compounds present in the particle and the presence of soluble gases (HNO\textsubscript{3}) in the atmosphere help the aerosols to take up water vapour and further increase the concentration of cloud droplets and the indirect forcing6. A contrary effect can take place from organic films that retard droplet growth and reducedrop concentration77.

Cloud development

In clean conditions the cloud droplet size increases as the cloud develops and extends in the vertical direction until the droplet reaches a critical radius of \(\sim 15 \ \mu\text{m} \) (ref. 36) for the onset of liquid precipitation. Alternatively, the droplet may freeze if the cloud top temperature reaches \(-10^\circ\text{C}\). In pollution plumes over Australia and Canada, and smoke plumes over Indonesia, satellite data show not only smaller droplets at the cloud base (5–8 \(\mu\text{m} \) radius compared with 10–15 \(\mu\text{m} \) in clean conditions), but also a lack of increase in droplet size as the cloud develops, rising through the atmosphere and accumulating water vapour. Consequently, precipitation does not occur or is delayed in polluted water clouds20,21. In the same regions, non-polluted cloud droplets grow to 20–30 \(\mu\text{m} \) and precipitation occurs. This suppression of precipitation was also observed for stratiform clouds polluted by emissions from ship stacks36 and for polluted cumulus clouds in the Indian Ocean71.

The high concentration of aerosol supplies new CCN to condense the excess water vapour as the cloud cools down. The result is an increase in the cloud liquid water content, cloud lifetime and area of coverage — called the second aerosol indirect effect. The global importance of this effect is still not clear. Analysis of changes in cloud fraction and precipitation throughout the last century suggests that more clouds are needed for the same amount of precipitation, as would be expected given the inhibitory effect of pollution on precipitation (D. Rosenfeld personal communication, from data in ref. 1).

Ice crystals

Water clouds that cannot precipitate owing to the high concentration of aerosols could still precipitate once the droplets freeze.
However, measurements in a deep convective cloud with a strong updraft show that the freezing process is postponed until the cloud reaches temperatures of ~37.5 °C. Strong updrafts and condensation lead to a high concentration of small cloud droplets. These droplets do not collide efficiently to form raindrops, nor do they freeze at ~10 °C. The result is a supercooled water cloud, thus eliminating an alternative way for clouds to precipitate. Model simulations suggest that this process requires the presence of high CCN concentrations (1,260 cm−3) and vigorous updrafts.

Cloud formation

The presence of light-absorbing black carbon in aerosols can also affect cloud properties. Models show that heating of the lower troposphere by aerosol absorption reduces cloud formation, an effect referred to as the semi-direct effect. There are no direct measurements of this effect, but analysis of satellite data of clouds embedded in varying concentrations of smoke from fires in the Amazon basin shows that for the thicker clouds an increase in the smoke AOT from 0.2 to 3 raises the cloud-top temperature by 4 °C, decreases the cloud reflectance by 0.13, while still reducing the droplet size by 40% (Fig. 7c). The simultaneous rise in the cloud-top temperature and reduction in reflectance — more than black carbon absorption itself can explain — indicates the possibility of a reduction in convection, thereby causing a decrease in the updraft speed and in the amount of liquid water available to form the cloud.

The effect of aerosols on cloud droplet size is better understood than their effect on precipitation. Additional studies are needed to quantify the indirect effect of aerosols on climate, but the potential for a significant cooling in most regions is indicated. The reduction of the precipitation efficiency by anthropogenic aerosols has the potential to shift precipitation away from polluted regions. Because the continents are more polluted than the ocean, this can cause a loss of fresh water over the continents, and in particular around populated regions. However, long-term regional studies that can measure the significance of this effect are still not available.

Aerosols in climate change

The cooling influence of aerosols on climate, directly through the reflection of sunlight to space and indirectly through changes in cloud properties, has been appreciated for over a decade, and has triggered a large number of observations, simulations and analyses. The effect of anthropogenic aerosols is not limited to cooling by sulphates. Instead, carbonaceous compounds that include light-absorbing black carbon can be an important warming agent, and the sign of the temperature change from aerosols can vary depending on the aerosols’ radiative properties and their distribution over the dark ocean and reflective land. The cooling of the Earth’s surface from absorbing aerosols (compared with the top of the atmosphere) and consequential warming of the atmosphere causes a flattened vertical temperature profile in the troposphere, which is expected to slow the hydrologic cycle, reduce evaporation from the surface and reduce cloud formation. It has also been suggested that as aerosols tend to reduce cloud droplet sizes and hence precipitation, rain and snow may be shifted from highly polluted populated areas to the more pristine oceanic regions. This raises the question of whether there has been or will be a change in the availability of fresh water due to aerosols.

Future research will need to unravel the magnitude of the aerosol effect on clouds and precipitation, on regional and global scales, and its impact to aerosol chemistry and cloud dynamics. Given the importance of the absorption of sunlight by black carbon, a quantitative assessment of black carbon sources, its lifetime in the atmosphere, its distribution around the globe and its impact on the hydrologic cycle will need to be explored.

To associate the aerosol impact with human activity, we need to distinguish natural from anthropogenic aerosols. By measuring separately fine and coarse particles, remote sensors distinguish the emission and transport of dust (mostly from natural sources) from pollution and smoke aerosols (mostly anthropogenic) around the planet. Remote sensors also map the distribution and properties of clouds, precipitation, and the Earth’s reflected solar and emitted thermal energy to space, as these atmospheric constituents are impacted by the aerosol. These global data and source characterization feed aerosol models to show us an increasingly realistic picture of aerosols around the world and their impact on the environment. To achieve these ends, ground-based and in situ measurements, models and satellite observation have to be each improved and integrated.